Copied to
clipboard

G = C33.Dic3order 324 = 22·34

4th non-split extension by C33 of Dic3 acting via Dic3/C2=S3

metabelian, supersoluble, monomial

Aliases: C33.4Dic3, 3- 1+23Dic3, C3⋊(C9⋊C12), C18.(C3×S3), C9⋊(C3×Dic3), (C3×C9)⋊5C12, C6.3(C9⋊C6), (C3×C18).7C6, C9⋊Dic34C3, (C32×C6).11S3, C2.(C33.S3), (C3×3- 1+2)⋊2C4, C32.5(C3⋊Dic3), C32.18(C3×Dic3), (C2×3- 1+2).5S3, (C6×3- 1+2).2C2, C6.3(C3×C3⋊S3), (C3×C6).36(C3×S3), C3.3(C3×C3⋊Dic3), (C3×C6).10(C3⋊S3), SmallGroup(324,100)

Series: Derived Chief Lower central Upper central

C1C3×C9 — C33.Dic3
C1C3C32C3×C9C3×C18C6×3- 1+2 — C33.Dic3
C3×C9 — C33.Dic3
C1C2

Generators and relations for C33.Dic3
 G = < a,b,c,d,e | a3=b3=c3=1, d6=c, e2=cd3, ab=ba, dad-1=ac=ca, ae=ea, bc=cb, bd=db, ebe-1=b-1, cd=dc, ece-1=c-1, ede-1=c-1d5 >

Subgroups: 252 in 78 conjugacy classes, 34 normal (16 characteristic)
C1, C2, C3, C3, C3, C4, C6, C6, C6, C9, C9, C32, C32, Dic3, C12, C18, C18, C3×C6, C3×C6, C3×C9, C3×C9, 3- 1+2, 3- 1+2, C33, Dic9, C3×Dic3, C3⋊Dic3, C3×C18, C3×C18, C2×3- 1+2, C2×3- 1+2, C32×C6, C3×3- 1+2, C9⋊C12, C9⋊Dic3, C3×C3⋊Dic3, C6×3- 1+2, C33.Dic3
Quotients: C1, C2, C3, C4, S3, C6, Dic3, C12, C3×S3, C3⋊S3, C3×Dic3, C3⋊Dic3, C9⋊C6, C3×C3⋊S3, C9⋊C12, C3×C3⋊Dic3, C33.S3, C33.Dic3

Smallest permutation representation of C33.Dic3
On 108 points
Generators in S108
(1 68 46)(2 57 41)(3 64 54)(4 71 49)(5 60 44)(6 67 39)(7 56 52)(8 63 47)(9 70 42)(10 59 37)(11 66 50)(12 55 45)(13 62 40)(14 69 53)(15 58 48)(16 65 43)(17 72 38)(18 61 51)(19 104 80)(20 93 75)(21 100 88)(22 107 83)(23 96 78)(24 103 73)(25 92 86)(26 99 81)(27 106 76)(28 95 89)(29 102 84)(30 91 79)(31 98 74)(32 105 87)(33 94 82)(34 101 77)(35 108 90)(36 97 85)
(1 46 68)(2 47 69)(3 48 70)(4 49 71)(5 50 72)(6 51 55)(7 52 56)(8 53 57)(9 54 58)(10 37 59)(11 38 60)(12 39 61)(13 40 62)(14 41 63)(15 42 64)(16 43 65)(17 44 66)(18 45 67)(19 98 86)(20 99 87)(21 100 88)(22 101 89)(23 102 90)(24 103 73)(25 104 74)(26 105 75)(27 106 76)(28 107 77)(29 108 78)(30 91 79)(31 92 80)(32 93 81)(33 94 82)(34 95 83)(35 96 84)(36 97 85)
(1 7 13)(2 8 14)(3 9 15)(4 10 16)(5 11 17)(6 12 18)(19 25 31)(20 26 32)(21 27 33)(22 28 34)(23 29 35)(24 30 36)(37 43 49)(38 44 50)(39 45 51)(40 46 52)(41 47 53)(42 48 54)(55 61 67)(56 62 68)(57 63 69)(58 64 70)(59 65 71)(60 66 72)(73 79 85)(74 80 86)(75 81 87)(76 82 88)(77 83 89)(78 84 90)(91 97 103)(92 98 104)(93 99 105)(94 100 106)(95 101 107)(96 102 108)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)
(1 106 10 97)(2 105 11 96)(3 104 12 95)(4 103 13 94)(5 102 14 93)(6 101 15 92)(7 100 16 91)(8 99 17 108)(9 98 18 107)(19 45 28 54)(20 44 29 53)(21 43 30 52)(22 42 31 51)(23 41 32 50)(24 40 33 49)(25 39 34 48)(26 38 35 47)(27 37 36 46)(55 89 64 80)(56 88 65 79)(57 87 66 78)(58 86 67 77)(59 85 68 76)(60 84 69 75)(61 83 70 74)(62 82 71 73)(63 81 72 90)

G:=sub<Sym(108)| (1,68,46)(2,57,41)(3,64,54)(4,71,49)(5,60,44)(6,67,39)(7,56,52)(8,63,47)(9,70,42)(10,59,37)(11,66,50)(12,55,45)(13,62,40)(14,69,53)(15,58,48)(16,65,43)(17,72,38)(18,61,51)(19,104,80)(20,93,75)(21,100,88)(22,107,83)(23,96,78)(24,103,73)(25,92,86)(26,99,81)(27,106,76)(28,95,89)(29,102,84)(30,91,79)(31,98,74)(32,105,87)(33,94,82)(34,101,77)(35,108,90)(36,97,85), (1,46,68)(2,47,69)(3,48,70)(4,49,71)(5,50,72)(6,51,55)(7,52,56)(8,53,57)(9,54,58)(10,37,59)(11,38,60)(12,39,61)(13,40,62)(14,41,63)(15,42,64)(16,43,65)(17,44,66)(18,45,67)(19,98,86)(20,99,87)(21,100,88)(22,101,89)(23,102,90)(24,103,73)(25,104,74)(26,105,75)(27,106,76)(28,107,77)(29,108,78)(30,91,79)(31,92,80)(32,93,81)(33,94,82)(34,95,83)(35,96,84)(36,97,85), (1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18)(19,25,31)(20,26,32)(21,27,33)(22,28,34)(23,29,35)(24,30,36)(37,43,49)(38,44,50)(39,45,51)(40,46,52)(41,47,53)(42,48,54)(55,61,67)(56,62,68)(57,63,69)(58,64,70)(59,65,71)(60,66,72)(73,79,85)(74,80,86)(75,81,87)(76,82,88)(77,83,89)(78,84,90)(91,97,103)(92,98,104)(93,99,105)(94,100,106)(95,101,107)(96,102,108), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108), (1,106,10,97)(2,105,11,96)(3,104,12,95)(4,103,13,94)(5,102,14,93)(6,101,15,92)(7,100,16,91)(8,99,17,108)(9,98,18,107)(19,45,28,54)(20,44,29,53)(21,43,30,52)(22,42,31,51)(23,41,32,50)(24,40,33,49)(25,39,34,48)(26,38,35,47)(27,37,36,46)(55,89,64,80)(56,88,65,79)(57,87,66,78)(58,86,67,77)(59,85,68,76)(60,84,69,75)(61,83,70,74)(62,82,71,73)(63,81,72,90)>;

G:=Group( (1,68,46)(2,57,41)(3,64,54)(4,71,49)(5,60,44)(6,67,39)(7,56,52)(8,63,47)(9,70,42)(10,59,37)(11,66,50)(12,55,45)(13,62,40)(14,69,53)(15,58,48)(16,65,43)(17,72,38)(18,61,51)(19,104,80)(20,93,75)(21,100,88)(22,107,83)(23,96,78)(24,103,73)(25,92,86)(26,99,81)(27,106,76)(28,95,89)(29,102,84)(30,91,79)(31,98,74)(32,105,87)(33,94,82)(34,101,77)(35,108,90)(36,97,85), (1,46,68)(2,47,69)(3,48,70)(4,49,71)(5,50,72)(6,51,55)(7,52,56)(8,53,57)(9,54,58)(10,37,59)(11,38,60)(12,39,61)(13,40,62)(14,41,63)(15,42,64)(16,43,65)(17,44,66)(18,45,67)(19,98,86)(20,99,87)(21,100,88)(22,101,89)(23,102,90)(24,103,73)(25,104,74)(26,105,75)(27,106,76)(28,107,77)(29,108,78)(30,91,79)(31,92,80)(32,93,81)(33,94,82)(34,95,83)(35,96,84)(36,97,85), (1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18)(19,25,31)(20,26,32)(21,27,33)(22,28,34)(23,29,35)(24,30,36)(37,43,49)(38,44,50)(39,45,51)(40,46,52)(41,47,53)(42,48,54)(55,61,67)(56,62,68)(57,63,69)(58,64,70)(59,65,71)(60,66,72)(73,79,85)(74,80,86)(75,81,87)(76,82,88)(77,83,89)(78,84,90)(91,97,103)(92,98,104)(93,99,105)(94,100,106)(95,101,107)(96,102,108), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108), (1,106,10,97)(2,105,11,96)(3,104,12,95)(4,103,13,94)(5,102,14,93)(6,101,15,92)(7,100,16,91)(8,99,17,108)(9,98,18,107)(19,45,28,54)(20,44,29,53)(21,43,30,52)(22,42,31,51)(23,41,32,50)(24,40,33,49)(25,39,34,48)(26,38,35,47)(27,37,36,46)(55,89,64,80)(56,88,65,79)(57,87,66,78)(58,86,67,77)(59,85,68,76)(60,84,69,75)(61,83,70,74)(62,82,71,73)(63,81,72,90) );

G=PermutationGroup([[(1,68,46),(2,57,41),(3,64,54),(4,71,49),(5,60,44),(6,67,39),(7,56,52),(8,63,47),(9,70,42),(10,59,37),(11,66,50),(12,55,45),(13,62,40),(14,69,53),(15,58,48),(16,65,43),(17,72,38),(18,61,51),(19,104,80),(20,93,75),(21,100,88),(22,107,83),(23,96,78),(24,103,73),(25,92,86),(26,99,81),(27,106,76),(28,95,89),(29,102,84),(30,91,79),(31,98,74),(32,105,87),(33,94,82),(34,101,77),(35,108,90),(36,97,85)], [(1,46,68),(2,47,69),(3,48,70),(4,49,71),(5,50,72),(6,51,55),(7,52,56),(8,53,57),(9,54,58),(10,37,59),(11,38,60),(12,39,61),(13,40,62),(14,41,63),(15,42,64),(16,43,65),(17,44,66),(18,45,67),(19,98,86),(20,99,87),(21,100,88),(22,101,89),(23,102,90),(24,103,73),(25,104,74),(26,105,75),(27,106,76),(28,107,77),(29,108,78),(30,91,79),(31,92,80),(32,93,81),(33,94,82),(34,95,83),(35,96,84),(36,97,85)], [(1,7,13),(2,8,14),(3,9,15),(4,10,16),(5,11,17),(6,12,18),(19,25,31),(20,26,32),(21,27,33),(22,28,34),(23,29,35),(24,30,36),(37,43,49),(38,44,50),(39,45,51),(40,46,52),(41,47,53),(42,48,54),(55,61,67),(56,62,68),(57,63,69),(58,64,70),(59,65,71),(60,66,72),(73,79,85),(74,80,86),(75,81,87),(76,82,88),(77,83,89),(78,84,90),(91,97,103),(92,98,104),(93,99,105),(94,100,106),(95,101,107),(96,102,108)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)], [(1,106,10,97),(2,105,11,96),(3,104,12,95),(4,103,13,94),(5,102,14,93),(6,101,15,92),(7,100,16,91),(8,99,17,108),(9,98,18,107),(19,45,28,54),(20,44,29,53),(21,43,30,52),(22,42,31,51),(23,41,32,50),(24,40,33,49),(25,39,34,48),(26,38,35,47),(27,37,36,46),(55,89,64,80),(56,88,65,79),(57,87,66,78),(58,86,67,77),(59,85,68,76),(60,84,69,75),(61,83,70,74),(62,82,71,73),(63,81,72,90)]])

42 conjugacy classes

class 1  2 3A3B3C3D3E3F3G3H4A4B6A6B6C6D6E6F6G6H9A···9I12A12B12C12D18A···18I
order123333333344666666669···91212121218···18
size11222233662727222233666···6272727276···6

42 irreducible representations

dim1111112222222266
type++++--+-
imageC1C2C3C4C6C12S3S3Dic3Dic3C3×S3C3×S3C3×Dic3C3×Dic3C9⋊C6C9⋊C12
kernelC33.Dic3C6×3- 1+2C9⋊Dic3C3×3- 1+2C3×C18C3×C9C2×3- 1+2C32×C63- 1+2C33C18C3×C6C9C32C6C3
# reps1122243131626233

Matrix representation of C33.Dic3 in GL10(𝔽37)

10000000000
01000000000
0010000000
0001000000
00000360000
00001360000
00000036100
00000036000
0000000010
0000000001
,
1000000000
0100000000
00100000000
00026000000
00003610000
00003600000
00000036100
00000036000
00000000361
00000000360
,
1000000000
0100000000
0010000000
0001000000
00003610000
00003600000
00000036100
00000036000
00000000361
00000000360
,
11000000000
122700000000
00100000000
00026000000
00000036100
00000036000
00000000361
00000000360
0000100000
0000010000
,
321800000000
15500000000
0006000000
00310000000
00000013600
00000003600
00001360000
00000360000
0000000001
0000000010

G:=sub<GL(10,GF(37))| [10,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,36,36,0,0,0,0,0,0,0,0,0,0,36,36,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,26,0,0,0,0,0,0,0,0,0,0,36,36,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,36,36,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,36,36,0,0,0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,36,36,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,36,36,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,36,36,0,0,0,0,0,0,0,0,1,0],[11,12,0,0,0,0,0,0,0,0,0,27,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,26,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,36,36,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,36,36,0,0,0,0,0,0,0,0,1,0,0,0],[32,15,0,0,0,0,0,0,0,0,18,5,0,0,0,0,0,0,0,0,0,0,0,31,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,36,36,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,36,36,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0] >;

C33.Dic3 in GAP, Magma, Sage, TeX

C_3^3.{\rm Dic}_3
% in TeX

G:=Group("C3^3.Dic3");
// GroupNames label

G:=SmallGroup(324,100);
// by ID

G=gap.SmallGroup(324,100);
# by ID

G:=PCGroup([6,-2,-3,-2,-3,-3,-3,36,3171,1449,453,2164,7781]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=1,d^6=c,e^2=c*d^3,a*b=b*a,d*a*d^-1=a*c=c*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b^-1,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=c^-1*d^5>;
// generators/relations

׿
×
𝔽